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Executive Summary 

This study, conducted by ENSCO, Inc. from July 2018 to May 2019, describes several well-
documented statistical methods for evaluating the effectiveness of track inspection technologies.  
The methods can be used to measure the performance of new technologies and make 
comparisons with current track inspection methods.  This process will help the Federal Railroad 
Administration determine if the new technologies can be used to supplement or replace 
established methods of track inspection.   
The evaluation methods include: 

1. Correlation – to measure the strength of the relationship between two sets of 
measurements. 

2. Receiver Operating Characteristic – to compare the rate of correctly detecting defects to 
the rate of false alarms. 

3. Probability of Detection – to measure effectiveness at different flaw sizes. 
4. Repeatability – to compare measurements made under similar conditions. 
5. Reproducibility – to compare measurements made under different conditions. 

The choice of method depends on the objective of the evaluation, available test sample size, type 
of data collected by the inspection technology, and the availability of ground truth.  Ground truth 
is the actual condition that has been ascertained by direct observation.  It is often difficult and 
costly to establish.   
The performance measures from the evaluation methods include variance, coefficient of 
correlation, accuracy, sensitivity, and the size of defect that can be detected with a specified 
probability. 
This report demonstrates that sample size has a significant effect on the conclusions that can be 
drawn from evaluating track inspection effectiveness.  If tests are performed on a few sample 
flaws,1 there will be low confidence in the measured performance.  As such, it will not be 
possible to compare different technologies.  Current best practice is to have at least 30 test 
samples for each size of flaw for probability of detection analysis.  Sample size can be increased 
by grouping flaws of similar size into bins as well as by combining repeat inspections. 
This report recommends development of guidelines for the design of track inspection technology 
evaluation tests.  These guidelines should include recommendations for sample size and the 
number of repeat inspections.  Standards need to be set for acceptable track inspection 
performance.  These could be based on the results of testing existing, so-called “gold standard” 
inspection methods. 
A new and promising method of deriving probability of detection results is the Model-Assisted 
Probability of Detection (MAPOD) technique, which combines actual results with those from 
computer models of the inspection technology.  MAPOD could be used to derive results for 
defects at the safety limit from tests performed with smaller flaws.  This report gives examples of 
                                                 
1 A flaw is defined as any type of discontinuity that must be investigated to see if it should be rejected. 
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MAPOD used in other industries and recommends the approach be demonstrated on one or more 
track inspection systems. 
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1. Introduction 

The Federal Railroad Administration (FRA) contracted with ENSCO, Inc., to perform the work 
reported here.   

1.1 Background 
FRA safety standards require track to be inspected by various established manual and 
technological methods.  New inspection technologies are being developed by the railroad 
industry that aim to improve quality and cost-effectiveness.  This raises questions about the 
reliability and accuracy of these new inspection technologies and how well they compare to the 
established ones.  Currently, there is no formal approach to evaluating the effectiveness of new 
track inspection technologies.  There are no standards for acceptable reliability and accuracy of 
these technologies. 

1.2 Objectives 
The objective of this report is to provide FRA with a practical approach to quantifying the 
effectiveness of existing and emerging track inspection technologies.  The approach is to be 
demonstrated on a TGMS. 

1.3 Overall Approach 
ENSCO, Inc., began this work by identifying the various evaluation methods and performance 
measures in common usage.   Recommendations were then made on which method to use for 
each type of track inspection technology.   

1.4 Scope  
The work reported here only considers track inspection technologies.  However, many of the 
methods described are applicable to other mechanical and electrical systems. 

1.5 Organization of the Report 
Section 2 of this report describes several commonly used evaluation methods and performance 
measures.  Section 3 discusses the different categories of data measured by track inspection 
technologies.  Section 4 recommends the method to be used to evaluate the effectiveness of the 
different categories of track inspection data.  Section 5 gives an example of applying the methods 
to evaluate the effectiveness of a TGMS.  Conclusions and recommendations for further work 
are given in Section 6.   
The Appendix lists track inspection requirements from FRA regulations, the category of 
inspection, and known current technology.  The Glossary gives definitions of the technical terms 
used in this report.  
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2. Evaluation Methods and Performance Measures 

The following sub-sections describe the various evaluation methods and performance measures 
commonly used to evaluate the effectiveness of technology [1].  The last sub-section discusses 
the effect of sample size on the results.  In this report, “flaw” is used to mean any deviation from 
a perfect state and “defect” is used to mean a flaw that exceeds some threshold size. 

2.1 Correlation 
Correlation analysis is used to measure of the strength of the relationship between two variables 
[2].   
Figure 1 shows an example of two variables.  One variable, X, is a track profile measured with 
surveying equipment (referred to as the ground truth).  The other, Y, is a track profile measured 
by a geometry inspection car at 20 mph.  Each variable is measured every foot, and there are 500 
feet of measured data. 

 

Figure 1. Track Profile Measurements 
A simple way to visualize the relationship between the two variables is to plot one against the 
other.  Figure 2 shows the result of doing so for the data in Figure 1.  
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Figure 2. Plot of Geometry Car Data Against Ground Truth 
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Figure 2 shows an approximately linear correlation between the geometry car data and the 
ground truth.  The best fit straight line to this data has a slope of 0.975 and a bias of -0.015 in.  
The formula for this line is: 

  
Applying Equation 1 to the data in Figure 1, where n = 501, gives a correlation coefficient of 
0.971.   
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Repeating the calculation with data measured at different speeds would show how the correlation 
varies with speed.  The method can also be used to compare the correlation between different 
measuring cars and the ground truth. 
Instead of calculating the correlation coefficient using every foot-by-foot sample of data, it could 
be calculated for a subset of the data.  For example, it could be calculated for the data in Figure 1 
with an absolute value greater than 0.5.  This would provide information on how well the 
geometry car measures extreme values in the data. 

2.2 Receiver Operating Characteristic 
A receiver operating characteristic (ROC) diagram can be used to evaluate track inspection 
technologies that look for defects.  It compares the rate of correctly detecting defects to the rate 
of false alarms.   
An example of a track defect is a broken joint bar joining two pieces of rail end-to-end.  Table 1 
shows the four possible outcomes when a joint bar inspection system is used. 

Table 1. Defect Detection Outcomes 

 
A “hit” occurs when the inspection system correctly detects a broken joint bar.  A “miss” occurs 
when the inspection system fails to detect a broken joint bar.  A “false alarm” occurs when a 
joint bar is reported to be defective and it is not.  A “correct rejection” occurs when a joint bar is 
correctly reported not to be defective.  
Consider a section of track with 2,000 joint bars of which visual inspection (assumed to be the 
ground truth) has found 160 are defective.  Table 2 shows a possible example of results from a 
joint bar inspection system operating on this section of track. 

Table 2. Joint Bar Inspection Results 

 
Dividing by the numbers of defective and not-defective joint bars gives the following results: 

Predicted or M easured Condit ion 
Defect No Defect 

Defect 
Hit Miss 

Ground {True Posit ive) {Fa lse Negative) 

Truth False Alarm Correct Rej ection 
No Defect (False Posit ive) (True Negat ive) 

Predicted or Measured Condition 
Defect No Defect 

Defect 155 5 
Ground 
Truth 

No Defect 55 1785 
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• True Positive Rate = 155/160 = 0.969 

• False Positive Rate = 55/1840 = 0.030 

• False Negative Rate = 5/160 = 0.031 

• True Negative Rate = 1785/1840 = 0.970 
Figure 3 shows the false positive rate plotted against the true positive rate on an ROC diagram. 

 

Figure 3. ROC Diagram for Joint Bar Inspection 
Sensitivity, denoted by d’ (d prime), is a measure of ROC performance.  It is calculated from: 

Sensitivity (d’) = z(True Positive Rate) + z(False Positive Rate) 
where the appropriate Z-values are obtained from a standard normal table (i.e., the Z-table). 

The dashed line in Figure 3 has a sensitivity of zero.  The curve that passes through the data 
point has a sensitivity of 3.7. 
The ROC diagram can be used to compare different inspection systems.  In general, the closer 
the result is to the top-left corner of the diagram the better the system is at classifying defects.  A 
result lying on the dashed diagonal line in Figure 3 would show no discrimination between 
defective and not-defective joint bars.  This result would indicate an inspection system that was 
no better than taking a random guess at the condition of a joint bar. 
Accuracy is another measure of an inspection system’s performance.  It is calculated from: 
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For the example given in Table 2, the accuracy is 0.969 or 96.9 percent. 

2.3 Probability of Detection 
Probability of detection (POD) analysis extends the ROC method to evaluate inspection 
effectiveness for different defect sizes.  The method of using POD depends on whether the 
inspection technology simply identifies a defect, or if it quantifies the size of the defect. 

2.3.1 Method A 
POD Method A is used when ground truth is known and the inspection technology results in 
finding a defect.  The same four outcomes as shown in Table 1 (i.e., hit, miss, false alarm, 
correct rejection) are possible. 
Figure 4 shows the results of POD Method A for the inspection of defects in welds in railroad 
tank car shells [3].  Approximately 100 test specimens with known defects of different sizes were 
manually inspected.   

 

Figure 4. POD Results for Tank Car Inspection 

Accuracy = (T p . . ) me 0:s1uves 
(True Po.siti.ves) + (True Negatives) 

(True Negatives) + (False egatives) + (False Positives) 

100 ''"""" ..... ... ... .. "" .... "" , .. .. ... .... .. ..... .. • .. - - --
90 

80 

0 
0 70 
Q. 

z 60 
0 
j::: 

-
/ V 

I 
I 

0 50 UJ 
I-
UJ a 
IL 40 
0 
>-I- 30 ::::i 

,j Data Set; CUSTOMER PROCEDUR.ES - 3/29/2011 
Test Object ; Fatigue Cracks in Fillet Welded 

Steel TankcarPanels 
Condition: Sand Blasted -
Method: MAGNETIC PARTICLE 
Ope rator: 1 
Detected= 86 -in 

20 0 

90% POD= 3.2IN ; 81 .3mm 
False Calls= 2 -Cl: - PR.ED. POD 

Q. 

10 & HIT I MISS D.ATA 

0 ....... .. " ... , .. .. .. ... ,. - ---- - - - -0 0.5 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 
ACTUAL CRACK LEINGTH - (Inch) 



 

 9 

The triangles on the upper horizontal axis of Figure 4 represent defects that the inspector 
detected.  Those on the lower horizontal axis are defects that were not detected.  The POD curve 
in Figure 4 is a mathematical function fitted to the results.  It is used to estimate the POD for any 
defect size.  The defect size at 90 percent POD is a commonly used performance measure for 
inspection technologies.  In this example, a defect of 3.2 inches can be detected with an 
estimated probability of 90 percent.  
The POD diagram does not give information on the number of false positives reported.  
Therefore, this is stated in the text box in Figure 4. 
Figure 5 shows an example of the POD diagram being used to compare three different inspection 
technologies.  In this example, the 90 percent POD could not be determined for any of the 
methods.  However, the position of the magnetic particle POD curve above the other two 
indicates that this inspection technology is the best of the three techniques. The position of the 
visual inspection POD curve means that it is the worst inspection technique of the three. 

 

Figure 5. POD Comparison of Inspection Technologies 
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truth is known.  For example, ultrasonic inspection can give the approximate size of individual 
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However, in some cases the values of a or â (or both) need to be normalized by logarithmic or 
other appropriate transformation.  The portion of the PDF that is over the threshold, adec, is the 
POD for that value of a.  This is illustrated in Figure 6.  

 

Figure 6. Signal Responses at Two Flaw Sizes [4] 
Figure 6 shows a Gaussian PDF at two flaw sizes, a1 and a2 [4].  Flaw size a1 is below âdec, on 
the horizontal axis. However, a portion of the PDF of measured values, â, for a1 fall above the 
threshold on the vertical axis.  The portion above âdec is the POD(a1).  The POD(a2) is larger, but 
not 100 percent as a small portion of the PDF falls below âdec. 
Tests at the Rail Defect Test Facility at FRA’s Transportation Technology Center produced data 
on the variability of ultrasonic rail flaw measuring equipment [5].  The distribution of 
measurements of the width of transverse flaws in the head of the rail was found to be 
approximately Gaussian with a standard deviation of 0.4 inch.  For example, making 40 
measurements of a flaw with a width of 1.0 inch (a1 in Figure 6) might result in seven 
measurements above a decision threshold, âdec, of 1.4 inches.  The probability of detection, 
POD(a1), is then 7/40 = 0.175.  Similarly, for a flaw with width a2 = 2.0 inches, might result in 37 
measurements above 1.4 inches, giving POD(a2) as 37/40 = 0.925. 
This example shows that when there is variability in the measurements made by inspection 
systems, there is a small probability that flaws smaller than a decision threshold can be reported 
as being above that threshold.  Conversely, not all flaws larger than the threshold will be reported 
as such. 
Figure 7 shows the POD of several flaw sizes using this same example. 
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Figure 7. Probability of Detection with a Decision Threshold of 1.4 inches 

0.0

0.2

0.4

0.6

0.8

1.0

0 0.5 1 1.5 2 2.5 3 3.5

Pr
ob

ab
ili

ty
 o

f D
et

ec
tio

n

Flaw Width (in.)

2.4 Model Assisted Probability of Detection 
Obtaining experimental measurements for POD analysis can be expensive due to the cost of 
manufacturing test specimens and operating the inspection equipment under a large variety of 
test conditions.  The aim of the Model-Assisted Probability of Detection (MAPOD) method is to 
supplement experimental measurements by simulating the inspection process with a 
computational model.  Several examples of MAPOD applications have been published [6]. 
The POD of an inspection technology is affected by many factors, including defect morphology, 
operator skill, equipment variability, and variability in procedure.  Some of these factors can be 
easily described in a computational model.  Other factors, such as human variability, must be 
quantified through carefully designed experiments.  The earliest MAPOD studies used two non-
Bayesian based different strategies:   

1. Transfer Function Method (XFM), which uses a model to generate a new POD curve by 
transferring values of a factor (e.g., material type, curvature of a part) used in an 
experimentally obtained baseline curve. 

2. Full Model-Assisted (FMA), which uses a model to account for the physical factors that 
affect the inspection results and combines this with knowledge of human factors to 
estimate the total variability in the system. 

Most recently, a Bayesian framework has been applied to the MAPOD method.  The Bayesian 
estimation procedure combines ‘prior’ information with new information obtained from 
experiments to provide a ‘posterior’ estimate of the POD curve.  One type of prior information 
used in Bayesian MAPOD study is measurements obtained from laboratory experiments.  
Through application of Bayes’ formula, the experimental defect measurement information is 
combined with similar information taken from real measurements in the field.  The posterior 
POD curve is calculated from fewer samples of more costly field measurements by 
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supplementing these measurements with those from the laboratory.  Furthermore, the Bayesian 
framework allows the POD curve to be continually updated as new data is obtained [7]. 
Most published examples of MAPOD rely on a ground truth to validate the model.  It may also 
be possible to use MAPOD when a ground truth is unavailable.  This might be the case when the 
modeling software being used is well established and has previously been validated with similar, 
but not necessarily identical, experimental data.  Finite element modeling is an example of such a 
well-established approach. 

2.4.1 Non-Bayesian MAPOD 
Table 3 lists published examples from a literature review of non-Bayesian MAPOD 
demonstrations of non-destructive examination (NDE) methods [8].  The references include 
examples where the flaw size was compared to a known size (â vs. a) and when a defect was 
detected or not (hit-or-miss).   

Table 3. References to Non-Bayesian MAPOD Demonstrations [8] 

MAPOD 
Approach 

NDE 
Response 

NDE 
Method 

Applied to Reference 

XFM â vs. a Eddy current 
testing 

Fatigue cracks in complex 
engine components 

Thompson et al. [6] 

FMA â vs. a Eddy current 
testing 

Fatigue cracks in wing lap 
joints 

Thompson et al.. 
[6] 

FMA â vs. a Ultrasonic 
testing 

Defects in engine disk 
alloys with microstructural 
variability 

Thompson et al. [6] 
Smith et al. [9] 

XFM â vs. a Ultrasonic 
testing 

Fatigue cracks around 
fastener holes for aircraft 

Harding et al. [10] 

XFM â vs. a Ultrasonic 
testing 

Fatigue cracks in aluminum 
components 

Demeyer et al. [11] 

XFM, 
FMA 

â vs. a Eddy current 
testing 

Fatigue cracks in titanium 
plates 

Rosell and Persson 
[12] 

FMA â vs. a Eddy current 
testing 

Cracks in fastener sites Aldrin et al. [13] 

XFM, 
FMA 

â vs. a Ultrasonic 
testing 

Defects in railway axles Carboni and 
Cantini [14] 

XFM Hit-or-miss Ultrasonic 
testing 

Airplane lap joint specimen 
sets with multiple site 
fatigue damage 

Bode et al. [15] 

 
Rosell and Persson give an example of the MAPOD method using transfer functions that was 
applied to fatigue cracks in titanium plates [12].  Eddy current scans were made over 53 plates 
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with known crack lengths to establish the baseline POD.  Two different scan grids were used 
with spacings of 0.5 and 1.0 mm.  Figure 8 shows the POD curves derived from these 
experimental results. 

 
Figure 8. Experimental POD Curves [12] 

The 90 percent lower confidence limits for the POD curves are plotted as dashed lines in Figure 
8.  An example observation from these results was that the probability of detecting a crack of 
length 0.84 mm using the 0.5 mm spacing was 90 percent in 90 cases when the experiment was 
repeated 100 times. 
After the experiments were completed, a model of the eddy current inspection process was 
developed.  The model used finite elements to simulate the cracks and predict the response of the 
eddy currents.  Several variables were modeled, including grid spacing, crack orientation and 
shape, and probe handling.  These were assumed to be uniformly or normally distributed with 
appropriate statistical properties.  The model was then used to predict POD curves for the two 
different grid spacings. 
Figure 9 compares the POD curves from the model (dotted lines) with those from the 
experimental results (solid lines) for the two different grid spacings.  The upper 95 percent 
confidence limits for the model (dot-dash lines) and the experimental results (dashed lines) are 
also shown. 
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Figure 9. Modeled and Experimental POD Curves [12] 
The next step would be to make a judgement on the agreement between the model and the 
experimental results.  If better agreement was needed, the model could be developed further.  If 
the agreement was acceptable, the model could be used to predict POD curves for other 
conditions such as larger grid spacing.  

2.4.2 Bayesian MAPOD 
Table 4 lists published examples from a literature review of Bayesian MAPOD demonstrations 
of NDE methods [8].   

Table 4. References to Bayesian MAPOD Demonstrations [7] 

NDE NDE Applied to Reference 
Response Method 

Hit-or- Visual Demonstrate Bayesian approach to POD Leemans and 
miss testing determination based on limited field data. Forsyth [16] 

Hit-or- Eddy current Demonstrate Bayesian approach to POD Jenson et al. 
miss testing determination using computer models to [17] 

generate additional information to supplement 
limited data from experiment. 

â vs. a Radiographic Demonstrate Bayesian approach to POD Kanzler et al. 
testing demonstration using information from [7] 

artificial flaws to supplement that from a 
limited set of real flaws. 
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NDE NDE Applied to Reference 
Response Method 

â vs. a Eddy current Demonstrate Bayesian approach to POD Aldrin et al. 
testing demonstration using computer model [18] 

generated information. 

â vs. a Not specified Demonstrate method for determination of Hovey [19] 
both POD and crack size distribution from in-
service inspection data. 

Hit-or- Magnetic Apply a hierarchical Bayes approach to Dann and 
miss leakage incorporate influence of spatial distributed Maes [20] 

uncertainties on in-line inspections of 
pipelines. 

 
Kanzler et al. give an example of using the Bayesian approach to estimate POD for radiographic 
testing (RT) of flaws in welded copper canisters [7].  The results of testing on artificial flaws of 
known sizes were used to develop a model to predict the relationship between RT response and 
flaw size.  The model could also predict the variance in RT response at any artificial flaw size, 
and hence it could predict the POD using Method B.   
A similar model was developed from a small number of tests with real flaws.  The real flaws 
were broken open after testing to determine their sizes. 
Bayes’ theorem was then used to combine the model from the small number of tests on real 
flaws with the model from the larger number of tests on artificial flaws.  This improved the 
confidence in the results.  For example, the size of the defect that could be detected with 90 
percent probability and 95 percent confidence reduced from 1.2 mm with the model from the 
small number of real flaws to 1.0 mm with the combined model from real and artificial flaws. 

2.5 Repeatability and Reproducibility 
For any inspection technology there will be (1) variability when measuring the same test sample 
and (2) factors that the operator can change that may result in a difference in the measurements.  
The first situation describes repeatability, which is the result of measuring the same test sample 
multiple times keeping the conditions of the measurement as consistent as possible.  
Reproducibility, on the other hand, is the result of measuring the same test sample but adjusting 
conditions that the system operator can control (e.g., changing the measurement speed, direction, 
and orientation).  Ground truth is not needed for repeatability or reproducibility analysis.  
For repeatability, it is important that external sources of variation are avoided so the differences 
between measurements are only due to the inspection technology. Figure 10 shows an example 
of two measurements of track profile over the same 500 feet of track.   
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Figure 10. Repeated Track Profile Measurements 
The measurements in Figure 10 were made at the same speed and in the same direction to avoid 
the effect of these variables on the analysis of repeatability.  Although other variables such as 
sunlight and humidity were not controlled, one measurement was made immediately after the 
other.  This minimized the effect of the uncontrollable variables. 
A measure of repeatability is the variance (or standard deviation) calculated for a group of 
measurements collected under similar conditions.  The variance can be calculated using all data 
points to give an overall variance.  Alternatively, when repeatability at extreme values is of 
interest, the variance of maxima and minima within groups of measurements can be calculated. 
The repeatability of an established inspection technology can be measured and used to set a gold 
standard.  Then, the repeatability of new inspection technologies can be compared to this 
standard.  
Reproducibility is the closeness of agreement between average measurements taken under varied 
conditions. Figure 11 shows an example of track profile measurements made in the forward and 
reverse directions over the same 500 feet of track.  The speed was the same for both 
measurement runs. 
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Figure 11. Track Profile Measurements in Different Directions 
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Figure 12 shows an example of track profile measurements made at 20 and 100 mph over the 
same 500 feet of track.  The direction was the same for both measurement runs. 

 

Figure 12. Track Profile Measurements at Different Speeds 
Reproducibility can be measured by comparing the variance (or standard deviation) between 
groups of measurements made under different conditions with the inherent variance of the 
inspection technology (calculated from its repeatability).  Analysis of variance (ANOVA) 
methods can be used to determine if the reproducibility is worse than that expected.   
As with repeatability, the variance in reproducibility can be calculated using the averages of all 
data groups.  Alternatively, the variance of maxima and minima within the measurement groups 
can be calculated.  This alternative is useful when reproducibility at extreme values is of interest. 
The reproducibility of an established inspection technology can be measured and used to set a 
gold standard.  In turn, the reproducibility of new inspection technologies can be compared to 
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this standard.  This comparison can be made for different operating conditions, such as speed and 
direction of travel.   

2.6 Sample Size 
The number of test samples available to evaluate an inspection technology has a significant 
effect on the results.  Current literature recommends 30 samples per flaw size for POD.  In the 
POD Method A example in Section 2.3.1, there were approximately 90 test samples with a range 
of crack lengths up to 6 inches.  No single crack length had more than six samples.  To satisfy 
current best practice, there should have been at least 30 test samples for each crack length.  This 
large number of test samples is usually impractical. 
Error bounds are the range of numbers within which a certain percentage of a population are 
expected to fall, the percentage being the confidence interval.  When the sample size is less than 
30, the error bounds are given by: 
  

Table 5. Z-values for Common Confidence Intervals 

Confidence Interval (%) Z-value 

80 1.282 

90 1.645 

95 1.960 

99.9 3.291 

 
The user determines the confidence level and, if greater confidence is required, the error bounds 
widen.  Given a small sample size, an acceptable confidence level must be balanced with 
acceptable error bounds.  
In the example in Section 2.3.1 there were six samples with cracks 2.75 inches long.  The 
estimated POD at this crack length was 0.88.  T-tables give a value of tconfidence = 0.727 for this 
sample size and a 75 percent confidence level [22].  Assuming s = 1, the formula above gives the 
lower error bound as 0.58 and the upper error bound as greater than 1.0.  Thus, there is a 75 
percent confidence that the true POD for this crack length lies between 0.58 and 1.0 (since the 
maximum possible value is 1.0).   
This example shows how small sample sizes can weaken the conclusions that can be drawn from 
experiments.   

s *- t Id B = + - con ,-net: + X - rn 
where n is the sample size, s is the .standru:-d deviat ·on of the sample measmements, X is the 
mean of the sample measmements, a!1ld tcoeful=e is a function of the confidence level Whentbe 
sample size is 30 or more , the pru:-am.eter tco11.fide,we is replaced ·with Z Tab e 5 gives Z-values for 
conunon confidence intervals.  
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Figure 13 shows an example of how error bounds vary with sample size for different confidence 
levels.  In this example the standard deviation, 𝑠𝑠, is 1, and the sample mean, X̅, is again 0.88.  As 
before, the lower error bound with a sample size of six and a confidence level of 75 percent is 
seen to be 0.58.  Reducing the sample size to four, for example, reduces the lower error bound at 
the same confidence level to 0.55.  Alternatively, increasing the confidence level to 90 percent 
and keeping the sample size at six reduces the lower error bound at the same confidence level to 
0.28. 
 

 

Figure 13. Effect of Sample Size on Lower Error Bounds 

When there are few samples for analysis there are two methods recommended in the literature to 
achieve a higher confidence with smaller error bounds: binning and supplementing [4]. 
The binning of flaw sizes allows for several samples to be grouped, and each sample within the 
group can be added to the value n.  The POD is of most importance on either side of the critical 
flaw size, adec, which is the size at which a flaw is considered a defect.  This should be 
considered when determining bin ranges.  Bins on either side of adec should be roughly 
equivalent and ideally the most populated.  Bins at the lower and upper ends of flaw sizes should 
populated by enough samples to achieve a reasonable confidence level and tolerable error 
bounds. 
Supplementing the sample size with data from different sources of measurements increases 
confidence in the results.  It is an acceptable approach if the different measurements are shown to 
be repeatable and reproducible.  
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3. Categories of Inspection Technology 

Section 2 highlighted the importance of ground truth measurements in evaluating the 
effectiveness of inspection technologies.  Strong conclusions can only be made when ground 
truth is available.  Thus, there are two basic types of inspection technologies—where ground 
truth is available and where it is not. 
In practice, absolute ground truth is rarely available.  In the case of the track profile 
measurements described earlier, ground truth was taken from accurate surveys, but even these 
were not free from errors. 
When ground truth is available it may be time-consuming and costly to establish.  For example, 
in the case of the joint bars described earlier, the ground truth could be established by visually 
inspecting all 2,000 samples.  
In some cases, it may be acceptable to replace ground truth with an established method of 
inspection, referred to as a gold standard.  For example, a gold standard for track geometry 
measurement might be an inspection system that has been used by the industry for many years 
and is acknowledged as giving valid results.  It could also be an inspection technology that has 
previously been validated using ground truth. 
The data gathered by track inspection technologies falls into two categories: 

1. Continuous signals, such as the foot-by-foot data recorded by TGMS 
2. Discrete data (i.e., data at a particular track location), such as the condition of a joint bar 

and the flangeway clearance at a crossing diamond 
Discrete data can be further categorized as binary (e.g., a fatigue crack is present or not) or 
quantified (e.g., the length of a fatigue crack).  
Table 6 allocates numbers from 1 through 6 to the different categories of data produced by track 
inspection technologies.   

Table 6. Categories of Track Inspection Data 

 
The Appendix lists currently available track inspection technologies and shows which categories 
of data they produce.  Note that some inspection technologies can produce more than one 
category of data. 

Ground. Truth 

Available 

Un.avaifable 

Continuous Signal 
(e.g.~ foot-by-foot) 

1 
4 

Diiscrete Data 

Binary 
( e.:g., yes/no) 

2 

5 

Quantified 
( e.g., defect size) 

3 

6 
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4. Recommended Methods of Evaluation 

Table 7 shows the recommended methods of evaluation for the data categories defined in Table 
6. 

Table 7. Recommended Evaluation Methods 

Data Category Description Method 

1 Continuous signal with ground 
truth 

Correlation 

2 Binary discrete data with  
ground truth 

ROC Curve, POD Method A, MAPOD 

3 Quantified discrete data with 
ground truth 

Correlation, POD Method B, MAPOD 

4 Continuous data – no ground 
truth 

Repeatability, Reproducibility 

5 Binary discrete data – no  
ground truth 

MAPOD, Repeatability, Reproducibility 

6 Quantified discrete data – no 
ground truth 

MAPOD, Repeatability, Reproducibility 

 
Where more than one method is listed in Table 7, the preferred method depends on the 
availability of data, costs of experiment and analysis, objective of the evaluation, and the criteria 
being used to judge the effectiveness of the inspection technology.  Using more than one method 
can give additional insight into the capabilities of the system being evaluated. 
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5. Evaluation of Track Geometry Measuring System Effectiveness 

This section gives detailed examples of applying the methods described in Section 2.  Data from 
a TGMS are used.  The purpose of the analysis is to answer the question: How effective is the 
system at measuring track geometry? 
Table A.1 in Appendix A shows that track geometry data covers data categories 1, 2, and 3.  
Since the data is measured continuously it is in category 1.  The data can also be analyzed and 
compared with limits set out in track safety standards and regulations.  This pass-or-fail criteria 
is an example of binary data in category 2.  The analysis can also quantify the magnitude of track 
geometry flaws, which puts the data in category 3. 
Table 6 recommends that data in categories 1, 2, and 3 be analyzed by Correlation, ROC Curve, 
POD Methods A and B as well as MAPOD.  Examples of applying each of these methods to 
track geometry data are provided in the following sub-sections.  Examples of repeatability and 
reproducibility analysis are also provided. 
The data used in these examples were measured on the High-Speed Adjustable Perturbation Slab 
Track section of the Railroad Test Track (RTT) at FRA’s Transportation Technology Center.  
The 31-foot mid-chord offset for the vertical track profile of both rails was the measurement 
selected for analysis.   
Figure 14 shows the ground truth geometry at the section of track used in the analysis.  
Measurements with high-accuracy surveying equipment were considered ground truth for this 
analysis.  The measurements were made every foot for 500 feet. 

 

Figure 14. Ground Truth Geometry at Test Section 
To allow run-in and run-out of the 31-foot mid-chord measurement, 54 feet of data was 
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that could be divided into 12 segments, 31 feet long on both the left and right rails (24 segments 
in total), as shown in Figure 14. 
The TGMS made measurements over the test section at six different speeds ranging from 20 to 
100 mph.  Measurements were made in clockwise and counter-clockwise directions on the RTT.  
They were also made with the TGMS running in the forward and reverse orientations.  A total of 
72 measurement runs were available for analysis—three measurement runs for each combination 
of speed, direction, and orientation.  The measurements were made in July 2017. 

5.1 Repeatability and Reproducibility 
The repeated measurements at the same speed, direction, and orientation allow the repeatability 
of the TGMS to be analyzed.  Once that has been established, the TGMS reproducibility can be 
analyzed by comparing results at different speeds, directions and orientation.   
In this analysis, the means and variances of the 31-foot mid-chord offset were calculated in each 
of five bins, each 0.1 in wide.  Table 8 lists the number of ground truth samples in each bin. 

Table 8. Foot-by-Foot Samples for Each Combination of Speed, Direction, and Orientation 

31-Foot Mid-
Chord Offset Bin 

Samples 

0.0 to 0.1 in. 541 

0.1 to 0.2 in. 70 

0.2 to 0.3 in. 87 

0.3 to 0.4 in. 57 

Greater than 0.4 in. 31 

 
Figure 15 shows a whisker plot of the results for the measurements at 20 mph.  Each data point 
indicates the mean and variance (shown as ±3 standard deviations from the mean) for the three 
measurement runs at a combination of direction and orientation.   
The top-leftmost data point in Figure 15 shows the repeatability of the TGMS in the clockwise 
direction, operating in the forward orientation, for the data in the bin from 0.0 to 0.1 inch.  The 
whisker length is smallest in this bin and increases as the magnitude of the bin increases.  This 
could be partially due to the fewer data points in the higher bins. 
The four top-leftmost data points in Figure 15 show the reproducibility of the TGMS when the 
direction and orientation are varied for the data in the bin from 0.0 to 0.1 inch.  The overlap of 
the four results (whiskers) indicate no statistically significant difference among the means of the 
four measurements. The TGMS has a good reproducibility in this range.  The results also overlap 
in most of the higher bins.  One exception occurs in the bin from 0.2 to 0.3 inch where there is a 
significant difference in the counterclockwise measurement run in the forward orientation and 
the clockwise measurement run in the reverse orientation, denoted by the red data points in the 
figure.  A similar mismatch occurs in the bin from 0.3 to 0.4 inch. 
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Figure 15. Repeatability and Reproducibility Results for Foot-by-Foot Data at 20 mph 
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Figure 16. Repeatability and Reproducibility Results for Foot-by-Foot Data at 100 mph 
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Figure 16 shows the repeatability and reproducibility results for the TGMS measurements at 100 
mph.  The results show good repeatability and reproducibility in all bins. 
Comparing Figure 15 with Figure 16 shows there is less variance in the 100 mph measurements 
than at 20 mph.  The TGMS has better repeatability and reproducibility at 100 mph compared to 
at 20 mph. 

5.2 Correlation 
Correlation analysis shows the strength of the relationship between the TGMS measurements and 
the ground truth.  Figure 17 shows the correlation for a single measurement run at 20 mph 
(sample size of 393).  The absolute value of the data at each foot is plotted.  The straight line is 
the least squares best-fit to the data.  Figure 18 shows the correlation for a single measurement 
run at 100 mph. 

 

Figure 17. Foot-by-Foot Correlation at 20 mph 
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Figure 18. Foot-by-Foot Correlation at 100 mph 
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Figure 17 and Figure 18 show a reasonably linear relationship between the TGMS data and the 
ground truth.  There appears to be a slightly lower correlation at 100 mph compared to that at 20 
mph.  Table 9 shows the correlation statistics for the foot-by-foot data at 20 and 100 mph. 

Table 9. Foot-by-Foot Correlation Statistics 

Speed (mph) 20 100 

Slope 0.976 0.971 

Bias 0.004 0.005 

R2 0.969 0.941 

Correlation Coefficient 0.984 0.970 

 
The slope of the relationship between TGMS data and ground truth is similar at 20 and 100 mph.  
The TGMS slightly underestimates the ground truth.  The bias is similar at 20 and 100 mph and 
is very small. 
The R2 and correlation coefficient values in Table 9 confirm the observation that there is better 
correlation at 20 mph compared to 100 mph. 
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An example of an alternative correlation analysis is to consider the peak measurement 
(maximum absolute value) in each 31-foot track segment.  Figure 19 and Figure 20 show this 
correlation at 20 and 100 mph, respectively.  The data is combined from three measurement runs 
at each speed in the same direction and orientation (sample size of 3 × 24 = 72). 

 

Figure 19. 31-Foot Correlation for Three Measurement Runs at 20 mph 
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Figure 20. 31-Foot Correlation for Three Measurement Runs at 100 mph 
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Figure 19 and Figure 20 show a reasonably linear relationship between the TGMS data and the 
ground truth.  Table 10 shows the correlation statistics for the 31-foot segment data at 20 and 100 
mph. 

Table 10. 31-Foot Correlation Statistics 

Speed (mph) 20 100 

Slope 0.986 1.008 

Bias 0.006 0.001 

R2 0.995 0.990 

Correlation Coefficient 0.998 0.995 

 
The statistics in Table 10 show a very good correlation between TGMS data and ground truth.  
The bias is very small, and the other statistics are close to the ideal value of unity.  There is little 
difference between the correlation at 20 mph and 100 mph. 
Comparing Table 9 with Table 10 shows there is improved correlation with the 31-foot data than 
with the foot-by-foot data.  This is likely due to the difficulty in exactly aligning foot-by-foot 
data—a problem that does not significantly affect the 31-foot results. 



 

 30 

5.3 ROC  
ROC analysis compares the rate of correctly detecting defects to the rate of false alarms.  It 
requires thresholds to be set that define the magnitude of defects.  For example, a foot-by-foot 
measurement of the 31-foot mid-chord offset in the ground truth that exceeds a threshold may be 
considered a defect.  The ROC curve plots the success rate of the TGMS in finding those defects 
(true positives) against the rate at which defects are reported that are below the threshold (false 
positives). 
Table 11 shows the results of this analysis for four different thresholds.  The data comes from 
three measurement runs at each speed in the same direction and orientation. 

Table 11. Foot-by-Foot ROC Results at 20 and 100 mph 

 
From Table 10, the ground truth has 525 foot-by-foot values that exceed a threshold of 0.20 inch 
and are considered defects.  It also has 1,833 foot-by-foot values that are below the threshold.  At 
20 mph, the TGMS correctly identified 505 foot-by-foot values above the threshold of 0.2 inch.  
It also reported 31 foot-by-foot values above that threshold which, according to the ground truth, 
were not defects.   
Table 12 shows the true and false positive rates calculated from the results in Table 10. 

Table 12. Foot-by-Foot True and False Positive Rates at 20 and 100 mph 

 
Figure 21 shows the rates in Table 11 plotted on a ROC diagram. 

Threshold (in) Defects Non-defects 20 mph 100 mph 

True False True False 
Positive Positive Positive Positive 

0.20 525 1,833 505 31 484 50 
0.25 417 1,941 398 34 378 62 
0.30 264 2,094 246 52 218 44 
0.35 159 2,199 130 5 131 19 

Threshold (in) 20mph 100 mph 

True False True False 
Positive Positive Positive Positive 

Rate Rate Rate Rate 
0.20 0.962 0.017 0.922 0.027 
0.25 0.954 0.018 0.906 0.032 
0.30 0.932 0.025 0.826 0.021 
0.35 0.818 0.002 0.824 0.009 
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Figure 21. ROC Curves at 20 and 100 mph 
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Figure 22 shows the detail in the top-left corner of the ROC diagram in Figure 21. 
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Figure 22. Detail of ROC Curves at 20 and 100 mph 
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Figure 21 and Figure 22 show ROC curves that fit the results at 20 and 100 mph.  The TGMS 
performs slightly better at 20 mph compared to 100 mph.  The sensitivity at 20 mph is 
approximately 3.7, and at 100 mph is approximately 3.2.   

5.4 POD Method A 
POD Method A analyzes the success of TGMS in finding defects.  As with the ROC analysis, it 
requires thresholds to be set that define the magnitude of defects.   
Figure 23 shows POD Method A results for foot-by-foot data from one TGMS measurement run 
at 20 mph with a threshold set to 0.2 inch. 
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Figure 23. POD Method A Results for Foot-by-Foot Data with a Threshold of 0.2 inch – 
One Measurement Run at 20 mph 
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The triangles in the top-right of Figure 23 indicate foot-by-foot measurements that the TGMS 
correctly identifies as defects (true positives).  The triangles in the bottom-left indicate correct 
rejections of defects by the TGMS (true negatives).  The triangle on the x-axis to the right of the 
vertical threshold line is a defect that the TGMS missed (false negative).  In this example there 
are no results in the top left of the diagram (false positives). 
The POD curve fitted to the results in Figure 23 has a value of 0.9 at 0.22 inch.  This means the 
TGMS has an estimated 90 percent probability of detecting defects (defined as being larger than 
0.2 inch) when the defect size is 0.22 inch.   
The 0.9 POD at 0.22 inch is an estimated value because it is based on a limited set of results.  
The dashed lines in Figure 23 are the 90 percent confidence limits calculated from the number of 
samples in each flaw size bin.  For the data from one measurement run at 20 mph the lower 90 
percent confidence limit at 0.22 inch is 0.70.  This means the probability of detecting defects 
(defined as being larger than 0.2 in) when the defect size is 0.22 inch lies between 0.70 and 1.0 
ninety percent of the time.    
The confidence interval is wide for the largest flaw sizes due to the small number of samples.  
Although the POD for large flaw sizes might be expected to show better confidence in detection, 
the data used for Figure 23 does not prove this. 
Using the data from only one measurement run at 20 mph clearly results in significant 
uncertainty over the results.  It would not be possible to compare two different TGMS with such 
limited data.   
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The uncertainty can be reduced by supplementing the number of samples.  The repeatability and 
reproducibility results from Section 5.1 justify combining all 12 measurement runs at 20 mph.  
Figure 24 shows the results of this approach. 

 

Figure 24. POD Method A Results for Foot-by-Foot Data with a Threshold of 0.2 inch – 12 
Measurement Runs at 20 mph 

Combining all 12 measurement runs at 20 mph gives many samples around the threshold of 0.2 
inch.  It results in a 0.9 POD at 0.23 inch with upper and lower 90 percent confidence limits at 
0.93 and 0.83, respectively.  With this greater confidence it should be possible to find any 
significant differences between the probabilities of detection of different TGMS. 
Figure 25 shows POD Method A results for 31-foot segment data from all 12 TGMS 
measurement runs at 20 mph with a threshold set to 0.2 inch.   
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Figure 25. POD Method A Results for 31-Foot Segment Data with a Threshold of 0.2 inch – 
12 Measurement Runs at 20 mph 
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The dashed lines in Figure 24 are 90 percent confidence limits calculated for bins 0.1 inch wide.  
Although all available data at 20 mph has been combined, the small sample sizes result in wide 
confidence bands.  In the region around the threshold used to define a defect (0.2 inch), there are 
no samples and the confidence interval is too wide to calculate.  For the same reason there is 
significant uncertainty about the shape of the POD curve around the threshold flaw size. 
One way to achieve narrow confidence bands is to design the evaluation test with many defects 
around the threshold value.  A minimum of 30 samples will generally give useful results.  

5.5 POD Method B 
POD Method B analyzes the success of TGMS in finding defects by looking at the distribution of 
measured results at different flaw sizes.  It uses the ability of the TGMS to measure the size of 
track geometry flaws. 
Figure 26 shows POD Method B results and 90 percent confidence limits for foot-by-foot data 
from all 12 TGMS measurement runs at 20 mph with a threshold set to 0.2 inch.  The POD curve 
in Figure 26 is generated from the distribution of flaw measurements at various flaw sizes, 
whereas the POD curve in Figure 24 was generated from hit-and-miss results. 
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Figure 26. POD Method B Results for Foot-by-Foot Data with a Threshold of 0.2 inch – 12 
Measurement Runs at 20 mph 

From Figure 26, the 0.9 POD is 0.24 inch with upper and lower 90 percent confidence limits of 
1.0 and 0.82, respectively.  This means the probability of detecting defects (defined as being 
larger than 0.2 inch) when the defect size is 0.24 inch lies between 0.82 and 1.0 ninety percent of 
the time.  This result is similar to that from the POD Method A analysis in the previous sub-
section. 
Another way to interpret the confidence intervals in Figure 26 is to consider the confidence in the 
flaw size that has a 90 percent POD.  The lower 90 percent confidence limit crosses the 0.9 POD 
at a flaw size of 0.24 inch.  This means a flaw of 0.24 inch has a 90 percent POD 9 out of 10 
times the evaluation is repeated. 
Figure 27 shows POD Method B results and 90 percent confidence limits for foot-by-foot data 
from all 12 TGMS measurement runs at 100 mph with a threshold set to 0.2 inch.   
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Figure 27. POD Method B Results for Foot-by-Foot Data with a Threshold of 0.2 inch – 12 
Measurement Runs at 100 mph 

At 100 mph the 0.9 POD is 0.25 inch, which is similar to that at 20 mph.  The upper and lower 
90 percent confidence limits are 1.0 and 0.84, respectively, which are also similar to those at 20 
mph.  Comparing Figure 26 with Figure 27 shows the POD at 20 mph lies within the 90 percent 
confidence limits for 100 mph and vice-versa.  This means there is good confidence that the 
POD is the same at 20 and 100 mph.   
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5.6 MAPOD 
MAPOD could be used to establish the TGMS probability of detection for defects beyond those 
available as ground truths.  A computer model of the TGMS would be created, then calibrated 
with a limited set of data.   
This method avoids the need to make measurements with the TGMS on track with defects close 
to or at a safety limit.  The model would be validated with measurements over smaller flaws, 
then used to predict the POD for larger defects. 
A computer model of the TGMS might have three parts: 

1. Physical model – The TGMS vehicle would be modelled with a commercially available 
software package.  The mass and inertia of the vehicle’s body and main components 
would be represented, as would the stiffness and damping of the suspension elements.  
The TGMS physical instrumentation, including the geometry beam and its connection to 
the vehicle, would be represented the same way.   

2. Electronics model – Transfer functions would describe how physical displacements, 
velocities, and accelerations are transformed into electrical signals by the TGMS 
instrumentation.  This model would include the optical devices used by the TGMS to 
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measure displacements.  Signal-to-noise ratios, variations in calibration, the effects of 
filtering, synchronization of inertial and optical signals, time domain to distance domain 
conversion, and analog to digital conversion would be included.   

3. Software model – The TGMS software would then be used to process the digital data into 
track geometry output parameters, such as the 31-foot mid-chord offset. 

The inputs to the three-part model would be track geometry flaws representing the ground truth.  
The outputs would be measurements of the same flaws, from which a POD could be calculated 
by Methods A and B.   
Confidence intervals could be derived by varying the random parameters of the model and 
repeating the POD calculations.  The random parameters could include noise in the track 
geometry inputs, variability in wheel-rail contact conditions, calibration variability, effects of 
sunlight, and other instrumentation noise.
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6. Discussion and Conclusions 

There are many established assessment methods available for evaluating the effectiveness of 
track inspection systems.  Some, such as correlation, receiver operating characteristic, and POD 
compare the measured results to known defects that are referred to as ground truth. 
Ground truth is often hard to establish.  For example, it is difficult to know the size of a defect in 
the head of a rail so that it can be used to evaluate rail defect detection systems.  The rail could 
be broken open and the defect size accurately measured after the test had been completed.  
However, although this would establish the ground truth, it would destroy the rail sample for 
future tests. 
The track geometry ground truth at the High-Speed Adjustable Perturbation Slab Track section 
of the Railroad Test Track at FRA’s Transportation Technology Center is established by making 
an accurate survey of the track’s position.  However, even this method is not precise and there is 
a possibility of slight track movement after the survey has been made.  Surveying the track’s 
position frequently will confirm the ground truth, but it will increase the cost of evaluating the 
effectiveness of TGMS. 
When the ground truth is too difficult or costly to establish there are several alternative 
approaches.  One approach is to compare a new track inspection system with a system already 
established in the industry.  The established system—referred to as a “gold standard”—would 
have previously been verified and would have known effectiveness. 
A relatively new approach when the ground truth is sparse or non-existent is called Model 
Assisted Probability of Detection (MAPOD).  A computer model of the inspection system is 
used to derive the POD.  Once the model has been calibrated using any available ground truths it 
can predict PODs for other conditions.  For example, a computer model of a TGMS could 
simulate the dynamic response of the system as it ran over a perturbed track section.  The 
response of the instrumentation and data analysis could be modelled, and the outputs compared 
with the known inputs.  Once calibrated, the model could be used to calculate PODs for other 
types of perturbations and operating conditions. 
Three approaches to evaluating track inspection system effectiveness do not require ground truth: 
correlation, repeatability, and reproducibility.  A correlation coefficient provides the degree of 
linear agreement between results of an inspection system versus ground truth, or agreement 
between two inspection systems.  Repeatability evaluates repeat performance under identical 
conditions.  Reproducibility evaluates performance when conditions, such as operating speed, are 
varied.  Repeatability and reproducibility of a new track inspection system can be compared with 
that for an established gold standard system. 
The confidence in the results from evaluating a track inspection system depends on the sample 
size.  Best practice suggests that at least 30 samples of each flaw are needed to give acceptable 
levels of confidence.  For evaluating track inspection systems this is typically impractical or 
unaffordable.  However, if a system can be shown to have good repeatability and reproducibility, 
then repeat measurements over fewer samples can improve the confidence in results.   
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Another way to increase confidence is to use flaw samples that are close to the threshold at 
which the system is being evaluated.  If only a limited number of samples can be tested, then the 
size of flaws should be close to the threshold of interest. 
This report describes several methods for evaluating the effectiveness of track inspection 
technologies.  It illustrates these methods with the example of a TGMS.   Further work is 
recommended to:  

• Determine acceptance criteria. This report describes several evaluation parameters such 
as correlation coefficient, sensitivity, and 90 percent POD without specifying acceptable 
values.  Further work is needed to say which parameters should be used and what the 
acceptable values are.  The choice of parameters will likely depend on the type of 
inspection technology and the goal of the evaluation.  Acceptable values could be derived 
from current, gold standard systems. 

• Develop a process for evaluating repeatability and reproducibility. These are two 
common measures of effectiveness since they do not require ground truth.  Further work 
could establish a process using analysis of variance methods to quantify repeatability and 
reproducibility.  The process could be applied to existing inspection technologies to 
establish benchmarks.   

• Develop guidance for the design of evaluation tests, showing how to use the findings 
from this report in practical applications.  Guidance would need to be given on sample 
size and the number of measurements under different conditions.  It would also need to 
show how testing objectives and costs affect the choice of evaluation method. 

• Apply MAPOD to a railroad inspection technology, building on the approach outlined 
in this report.  One or more MAPOD examples could be developed to demonstrate the 
approach.  If successful, the models could be used to determine the PODs for the example 
systems beyond currently known conditions. 
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Appendix A.  
Track Inspection Technologies and Data Categories 

The following tables list the categories of data generated by current inspection technologies.  
Table A.1 covers the inspection requirements of 49 CFR §213.  Table A.2 covers technologies 
that address track inspection not currently required by FRA regulations. 

Table A.1(a). Technologies Used for 49 CFR §213 (Part I) 

 
 

Measured Characteristic Parameter Data Technology Category 

Imaging systems 

Drainage Water flow obstructions 2 Theromographic 
systems 

LiDAR 

Imaging systems 

Vegetation Visibility obstruction 2 Theromographic 
systems 

LiDAR 

Gage, Alignment, Track Geometry 
Track Geometry Crosslevel, Runoff, 1,2,3 Measurement System 

Surface LiDAR based 

Ballast profile 1,2 Aurora system 

Ballast 4,5,6 (1,2,3 - GPR 
Fouling, moisture 
content, layering lab testing on NMR-TMMS, Imaging 

samples) Systems 

Imaging Systems 

Defective Ties 
Crosstie 

2,3 Laser Profiling System 

Aurora system 

Defective Ties Internally 2,3 Aurora X-Ray system 

Gage Restraint 

Gage restraint ULG, LG, PLG24, GWP 4,5,6 (1,2,3 for Measurement System 
ULG) (GRMS) 

PTLF 
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Table A.1(b). Technologies Used for 49 CFR §213 (Part II) 

 

Measured Characteristic Parameter Data Technology Category 

Ultrasonic Rail Flaw 

Induction Systems 
Defective rails Internal Rail Flaw 2,3 Radiography 

Magnetic Anomaly 
Detection 

Rail Surface Defects 2,3 Imaging Systems 
Defective rail (contd.) 

Broken Rail 2 Imaging System 

Broken or cracked joint 
Joint Bar Inspection 

Rail joints 2,3 System (IBIS) 
bars, missing bolts 

Other Imaging systems 

Torch cut rail NA NA NA 
Broken or missing tie 2 

Tie Plate plates Imaging Systems 

Metal objects present 2 Imaging Systems 

Missing or Defective 2 Imaging Systems, 
Fasteners GRMS 

Fastenings, obstructions 2 Imaging Systems, laser 
Turnouts and track crossings profile 
generally 

Flangeway width 1,2,3 Imaging Systems, laser 
profile 

Stock rail seating, braces 2 Imaging Systems, laser 
profile 

Switch points 2 Imaging Systems, Laser 
Profiling Systems 

Wheel thread stock rail 2 Imaging Systems, Laser 
Switches contact Profiling Systems 

Heel bolts 2 Imaging Systems 

Stand, connecting rod, NA NA throw lever 

Switch position indicator 2 visibility Imaging Systems 
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Table A.1(c). Technologies Used for 49 CFR §213 (Part III) 

 
  

Measured Characteristic Parameter Data Technology Category 

Flangeway depth 1,2,3 Imaging Systems, laser 
profile 

Frogs Frog point is chipped, 2 lmaging Systems, laser 
broken, or worn profile 

Tread portion of a frog 1,2,3 Imaging Systems, laser 
casting wear profile 

Spring and self-guarded As the applicable 2 lmaging Systems, laser 
frogs portions of "Frogs" profile 

Frog guard rails and guard Guard check gage, guard 1,2,3 Imaging Systems, laser 
faces and gage. face gage profile 
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Table A.2. Technologies Not Used for 49 CFR §213 

 
 

Vertical Deflection 1,2,3 (4,5,6) Mrail (VTDMS) 

Rolling Contact Fatigue 2,3 Eddy Current, Imaging 
systems 

Accelerations and Rail VTI Monitor 
4,5,6 Impact Forces Ride quality 

Wheel Rail Forces 2,3 Instrumented Wheelsets 
(IWS) 

Wheel Loads 2,3 WILD (rail circuits) 

Corrugation 1,2,3 Rail Corrugation 
Measurement System 

Grade Crossing (Profile and LiDAR 
2,3 Layout) Imaging System 

Track Circuits 2 Signaling Inspection 
Systems 

Theromographic 
Clearance 1,2,3 systems 

LiDAR 

Catenary Wire Geometry 1,2,3 Catenary Inspection 
Systems 

Pantograph 1,2,3 Catenary Inspection 
(Acceleration/Voltage/Force) Systems 

Rail Profile 1,2,3 Rail Profile System 

Rail Cant 1,2,3 Rail Profile System 

PTC Asset 

Third Rail (present or not) 2 Rail Profile System 
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Abbreviations and Acronyms 

Abbreviation  
or Acronym 

Name 

FRA Federal Railroad Administration  
FMA Full Model-Assisted  
MAPOD Model-Assisted Probability of Detection 
PDF Probability Density Function 
POD Probability of Detection 
RTT Railroad Test Track  
ROC Receiver Operating Characteristic  
TGMS Track Geometry Measuring System 
XFM Transfer Function Method 
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Glossary 

a – Physical dimension of flaw or target. 
â, (a-hat) – Measured response of an inspection system to a target of size a. 
adec – Dimension of target at the decision threshold. 
Accuracy – The probability of either true positive or true negative. 
Bayesian method – An analysis method that updates a hypothesis when new data becomes 
available. 
Calibration – Process of determining the performance parameters of a system by comparing 
them with measurement standards. 
Confidence – The long run frequency of being correct, e.g., a 95 percent confidence value for a90 
will be greater than the true a90 in 95 percent of similar experiments. 
Decision threshold – Value of a-hat which the signal is interpreted as a hit and below which the 
signal is interpreted as a miss. 
Defect – A flaw that is to be rejected, i.e., one that does not meet acceptance criteria, 
Discrete variable – Measurement variable having discrete levels or categories 
False negative – Inspection system response interpreted as having failed to detect a flaw when it 
is present at the inspection location, 
False positive – Inspection system response interpreted as having detected a target when none is 
present at the inspection location, 
Flaw – A type of discontinuity that must be investigated to see if it should be rejected, 
Ground Truth – Actual data ascertained by direct observation.  
Hit – Affirmative inspection system response (detection) when flaw is present, 
Inspection threshold – Smallest value of a-hat the inspection system records; the value of a-hat 
below which the signal is indistinguishable from noise, 
Inspection system – Ensemble that can include hardware, software, materials, and procedures 
intended for application of a specific inspection technology, 
Likelihood ratio method – Method for producing confidence bounds on hit-or-miss POD(a) 
curves. 
Miss – Inspection system response interpreted as not having detected a target when one is 
present at the inspection location, 
Repeatability – Variation among repeated runs over the same object or area being tested with 
the same conditions; e.g., comparison of multiple TGMS runs with the same system over the 
same track configuration at the same speed, direction, and car orientation, 
Reproducibility – Variation among repeated runs using the same equipment and different 
conditions; e.g., comparison of multiple TGMS runs with the same system over the same track 
configuration at the different speed, direction, and car orientations, 
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Saturation – Value of a-hat as large or larger than the maximum output of the system or the 
largest value of a-hat that the system can record. 
Sensitivity – Probability of a true positive. 
Specificity – Probability of a true negative. 
Target – Object of an inspection; e.g. a crack, flaw, defect, anomaly, or measurement 
discontinuity. 
tconfidence – A parameter from student’s t-distribution to give the confidence interval based on the 
size and standard deviation of a population. 
True negative – Inspection system response interpreted as having failed to detect a target when 
none is present at the inspection location.  
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